Logo Search packages:      
Sourcecode: radiance version File versions  Download package

parser.c

#ifndef lint
static const char RCSid[] = "$Id: parser.c,v 1.28 2003/11/15 17:54:06 schorsch Exp $";
#endif
/*
 * Parse an MGF file, converting or discarding unsupported entities
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <string.h>
#include "parser.h"
#include "lookup.h"
#include "messages.h"

/*
 * Global definitions of variables declared in parser.h
 */
                  /* entity names */

char  mg_ename[MG_NENTITIES][MG_MAXELEN] = MG_NAMELIST;

                  /* Handler routines for each entity */

int   (*mg_ehand[MG_NENTITIES])();

                  /* Handler routine for unknown entities */

int   (*mg_uhand)() = mg_defuhand;

unsigned    mg_nunknown;      /* count of unknown entities */

                  /* error messages */

char  *mg_err[MG_NERRS] = MG_ERRLIST;

MG_FCTXT    *mg_file;   /* current file context pointer */

int   mg_nqcdivs = MG_NQCD;   /* number of divisions per quarter circle */

/*
 * The idea with this parser is to compensate for any missing entries in
 * mg_ehand with alternate handlers that express these entities in terms
 * of others that the calling program can handle.
 * 
 * In some cases, no alternate handler is possible because the entity
 * has no approximate equivalent.  These entities are simply discarded.
 *
 * Certain entities are dependent on others, and mg_init() will fail
 * if the supported entities are not consistent.
 *
 * Some alternate entity handlers require that earlier entities be
 * noted in some fashion, and we therefore keep another array of
 * parallel support handlers to assist in this effort.
 */

/* temporary settings for testing */
#define e_ies e_any_toss
                        /* alternate handler routines */

static void make_axes(FVECT u, FVECT v, FVECT w);
static int put_cxy(void);
static int put_cspec(void);

static int e_any_toss(int ac, char **av); /* discard an unwanted entity */
static int e_cspec(int ac, char **av); /* handle spectral color */
static int e_cmix(int ac, char **av); /* handle mixing of colors */
static int e_cct(int ac, char **av); /* handle color temperature */


                        /* alternate handler support functions */

static int  (*e_supp[MG_NENTITIES])(int ac, char **av);

static char FLTFMT[] = "%.12g";

static int  warpconends;            /* hack for generating good normals */


void
mg_init(void)                 /* initialize alternate entity handlers */
{
      unsigned long     ineed = 0, uneed = 0;
      register int      i;
                              /* pick up slack */
      if (mg_ehand[MG_E_IES] == NULL)
            mg_ehand[MG_E_IES] = e_ies;
      if (mg_ehand[MG_E_INCLUDE] == NULL)
            mg_ehand[MG_E_INCLUDE] = e_include;
      if (mg_ehand[MG_E_SPH] == NULL) {
            mg_ehand[MG_E_SPH] = e_sph;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_CYL] == NULL) {
            mg_ehand[MG_E_CYL] = e_cyl;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_CONE] == NULL) {
            mg_ehand[MG_E_CONE] = e_cone;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_RING] == NULL) {
            mg_ehand[MG_E_RING] = e_ring;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_PRISM] == NULL) {
            mg_ehand[MG_E_PRISM] = e_prism;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_TORUS] == NULL) {
            mg_ehand[MG_E_TORUS] = e_torus;
            ineed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX;
      } else
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_NORMAL|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_FACE] == NULL)
            mg_ehand[MG_E_FACE] = mg_ehand[MG_E_FACEH];
      else if (mg_ehand[MG_E_FACEH] == NULL)
            mg_ehand[MG_E_FACEH] = e_faceh;
      if (mg_ehand[MG_E_COLOR] != NULL) {
            if (mg_ehand[MG_E_CMIX] == NULL) {
                  mg_ehand[MG_E_CMIX] = e_cmix;
                  ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
            }
            if (mg_ehand[MG_E_CSPEC] == NULL) {
                  mg_ehand[MG_E_CSPEC] = e_cspec;
                  ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
            }
            if (mg_ehand[MG_E_CCT] == NULL) {
                  mg_ehand[MG_E_CCT] = e_cct;
                  ineed |= 1L<<MG_E_COLOR|1L<<MG_E_CXY|1L<<MG_E_CSPEC|1L<<MG_E_CMIX|1L<<MG_E_CCT;
            }
      }
                              /* check for consistency */
      if (mg_ehand[MG_E_FACE] != NULL)
            uneed |= 1L<<MG_E_POINT|1L<<MG_E_VERTEX|1L<<MG_E_XF;
      if (mg_ehand[MG_E_CXY] != NULL || mg_ehand[MG_E_CSPEC] != NULL ||
                  mg_ehand[MG_E_CMIX] != NULL)
            uneed |= 1L<<MG_E_COLOR;
      if (mg_ehand[MG_E_RD] != NULL || mg_ehand[MG_E_TD] != NULL ||
                  mg_ehand[MG_E_IR] != NULL ||
                  mg_ehand[MG_E_ED] != NULL || 
                  mg_ehand[MG_E_RS] != NULL ||
                  mg_ehand[MG_E_TS] != NULL ||
                  mg_ehand[MG_E_SIDES] != NULL)
            uneed |= 1L<<MG_E_MATERIAL;
      for (i = 0; i < MG_NENTITIES; i++)
            if (uneed & 1L<<i && mg_ehand[i] == NULL) {
                  fprintf(stderr, "Missing support for \"%s\" entity\n",
                              mg_ename[i]);
                  exit(1);
            }
                              /* add support as needed */
      if (ineed & 1L<<MG_E_VERTEX && mg_ehand[MG_E_VERTEX] != c_hvertex)
            e_supp[MG_E_VERTEX] = c_hvertex;
      if (ineed & 1L<<MG_E_POINT && mg_ehand[MG_E_POINT] != c_hvertex)
            e_supp[MG_E_POINT] = c_hvertex;
      if (ineed & 1L<<MG_E_NORMAL && mg_ehand[MG_E_NORMAL] != c_hvertex)
            e_supp[MG_E_NORMAL] = c_hvertex;
      if (ineed & 1L<<MG_E_COLOR && mg_ehand[MG_E_COLOR] != c_hcolor)
            e_supp[MG_E_COLOR] = c_hcolor;
      if (ineed & 1L<<MG_E_CXY && mg_ehand[MG_E_CXY] != c_hcolor)
            e_supp[MG_E_CXY] = c_hcolor;
      if (ineed & 1L<<MG_E_CSPEC && mg_ehand[MG_E_CSPEC] != c_hcolor)
            e_supp[MG_E_CSPEC] = c_hcolor;
      if (ineed & 1L<<MG_E_CMIX && mg_ehand[MG_E_CMIX] != c_hcolor)
            e_supp[MG_E_CMIX] = c_hcolor;
      if (ineed & 1L<<MG_E_CCT && mg_ehand[MG_E_CCT] != c_hcolor)
            e_supp[MG_E_CCT] = c_hcolor;
                              /* discard remaining entities */
      for (i = 0; i < MG_NENTITIES; i++)
            if (mg_ehand[i] == NULL)
                  mg_ehand[i] = e_any_toss;
}


int
mg_entity(              /* get entity number from its name */
      char  *name
)
{
      static LUTAB      ent_tab = LU_SINIT(NULL,NULL);      /* lookup table */
      register char     *cp;

      if (!ent_tab.tsiz) {          /* initialize hash table */
            if (!lu_init(&ent_tab, MG_NENTITIES))
                  return(-1);       /* what to do? */
            for (cp = mg_ename[MG_NENTITIES-1]; cp >= mg_ename[0];
                        cp -= sizeof(mg_ename[0]))
                  lu_find(&ent_tab, cp)->key = cp;
      }
      cp = lu_find(&ent_tab, name)->key;
      if (cp == NULL)
            return(-1);
      return((cp - mg_ename[0])/sizeof(mg_ename[0]));
}


int
mg_handle(        /* pass entity to appropriate handler */
      register int      en,
      int   ac,
      char  **av
)
{
      int   rv;

      if (en < 0 && (en = mg_entity(av[0])) < 0) {    /* unknown entity */
            if (mg_uhand != NULL)
                  return((*mg_uhand)(ac, av));
            return(MG_EUNK);
      }
      if (e_supp[en] != NULL) {                 /* support handler */
            if ((rv = (*e_supp[en])(ac, av)) != MG_OK)
                  return(rv);
      }
      return((*mg_ehand[en])(ac, av));          /* assigned handler */
}


int
mg_open(                /* open new input file */
      register MG_FCTXT *ctx,
      char  *fn
)
{
      static int  nfids;
      register char     *cp;

      ctx->fid = ++nfids;
      ctx->lineno = 0;
      if (fn == NULL) {
            strcpy(ctx->fname, "<stdin>");
            ctx->fp = stdin;
            ctx->prev = mg_file;
            mg_file = ctx;
            return(MG_OK);
      }
                              /* get name relative to this context */
      if (fn[0] != '/' && mg_file != NULL &&
                  (cp = strrchr(mg_file->fname, '/')) != NULL) {
            strcpy(ctx->fname, mg_file->fname);
            strcpy(ctx->fname+(cp-mg_file->fname+1), fn);
      } else
            strcpy(ctx->fname, fn);
      ctx->fp = fopen(ctx->fname, "r");
      if (ctx->fp == NULL)
            return(MG_ENOFILE);
      ctx->prev = mg_file;          /* establish new context */
      mg_file = ctx;
      return(MG_OK);
}


void
mg_close(void)                /* close input file */
{
      register MG_FCTXT *ctx = mg_file;

      mg_file = ctx->prev;          /* restore enclosing context */
      if (ctx->fp != stdin)         /* close file if it's a file */
            fclose(ctx->fp);
}


void
mg_fgetpos(             /* get current position in input file */
      register MG_FPOS  *pos
)
{
      pos->fid = mg_file->fid;
      pos->lineno = mg_file->lineno;
      pos->offset = ftell(mg_file->fp);
}


int
mg_fgoto(               /* reposition input file pointer */
      register MG_FPOS  *pos
)
{
      if (pos->fid != mg_file->fid)
            return(MG_ESEEK);
      if (pos->lineno == mg_file->lineno)
            return(MG_OK);
      if (mg_file->fp == stdin)
            return(MG_ESEEK); /* cannot seek on standard input */
      if (fseek(mg_file->fp, pos->offset, 0) == EOF)
            return(MG_ESEEK);
      mg_file->lineno = pos->lineno;
      return(MG_OK);
}


int
mg_read(void)                 /* read next line from file */
{
      register int      len = 0;

      do {
            if (fgets(mg_file->inpline+len,
                        MG_MAXLINE-len, mg_file->fp) == NULL)
                  return(len);
            len += strlen(mg_file->inpline+len);
            if (len >= MG_MAXLINE-1)
                  return(len);
            mg_file->lineno++;
      } while (len > 1 && mg_file->inpline[len-2] == '\\');

      return(len);
}


int
mg_parse(void)                /* parse current input line */
{
      char  abuf[MG_MAXLINE];
      char  *argv[MG_MAXARGC];
      register char     *cp, *cp2, **ap;
                              /* copy line, removing escape chars */
      cp = abuf; cp2 = mg_file->inpline;
      while ((*cp++ = *cp2++))
            if (cp2[0] == '\n' && cp2[-1] == '\\')
                  cp--;
      cp = abuf; ap = argv;         /* break into words */
      for ( ; ; ) {
            while (isspace(*cp))
                  *cp++ = '\0';
            if (!*cp)
                  break;
            if (ap - argv >= MG_MAXARGC-1)
                  return(MG_EARGC);
            *ap++ = cp;
            while (*++cp && !isspace(*cp))
                  ;
      }
      if (ap == argv)
            return(MG_OK);          /* no words in line */
      *ap = NULL;
                              /* else handle it */
      return(mg_handle(-1, ap-argv, argv));
}


int
mg_load(                /* load an MGF file */
      char  *fn
)
{
      MG_FCTXT    cntxt;
      int   rval;
      register int      nbr;

      if ((rval = mg_open(&cntxt, fn)) != MG_OK) {
            fprintf(stderr, "%s: %s\n", fn, mg_err[rval]);
            return(rval);
      }
      while ((nbr = mg_read()) > 0) {     /* parse each line */
            if (nbr >= MG_MAXLINE-1) {
                  fprintf(stderr, "%s: %d: %s\n", cntxt.fname,
                              cntxt.lineno, mg_err[rval=MG_ELINE]);
                  break;
            }
            if ((rval = mg_parse()) != MG_OK) {
                  fprintf(stderr, "%s: %d: %s:\n%s", cntxt.fname,
                              cntxt.lineno, mg_err[rval],
                              cntxt.inpline);
                  break;
            }
      }
      mg_close();
      return(rval);
}


int
mg_defuhand(            /* default handler for unknown entities */
      int   ac,
      char  **av
)
{
      if (mg_nunknown++ == 0)       /* report first incident */
            fprintf(stderr, "%s: %d: %s: %s\n", mg_file->fname,
                        mg_file->lineno, mg_err[MG_EUNK], av[0]);
      return(MG_OK);
}


void
mg_clear(void)                /* clear parser history */
{
      c_clearall();                 /* clear context tables */
      while (mg_file != NULL)       /* reset our file context */
            mg_close();
}


/****************************************************************************
 *    The following routines handle unsupported entities
 */


static int
e_any_toss(       /* discard an unwanted entity */
      int   ac,
      char  **av
)
{
      return(MG_OK);
}


int
e_include(        /* include file */
      int   ac,
      char  **av
)
{
      char  *xfarg[MG_MAXARGC];
      MG_FCTXT    ictx;
      XF_SPEC     *xf_orig = xf_context;
      register int      rv;

      if (ac < 2)
            return(MG_EARGC);
      if ((rv = mg_open(&ictx, av[1])) != MG_OK)
            return(rv);
      if (ac > 2) {
            register int      i;

            xfarg[0] = mg_ename[MG_E_XF];
            for (i = 1; i < ac-1; i++)
                  xfarg[i] = av[i+1];
            xfarg[ac-1] = NULL;
            if ((rv = mg_handle(MG_E_XF, ac-1, xfarg)) != MG_OK) {
                  mg_close();
                  return(rv);
            }
      }
      do {
            while ((rv = mg_read()) > 0) {
                  if (rv >= MG_MAXLINE-1) {
                        fprintf(stderr, "%s: %d: %s\n", ictx.fname,
                                    ictx.lineno, mg_err[MG_ELINE]);
                        mg_close();
                        return(MG_EINCL);
                  }
                  if ((rv = mg_parse()) != MG_OK) {
                        fprintf(stderr, "%s: %d: %s:\n%s", ictx.fname,
                                    ictx.lineno, mg_err[rv],
                                    ictx.inpline);
                        mg_close();
                        return(MG_EINCL);
                  }
            }
            if (ac > 2)
                  if ((rv = mg_handle(MG_E_XF, 1, xfarg)) != MG_OK) {
                        mg_close();
                        return(rv);
                  }
      } while (xf_context != xf_orig);
      mg_close();
      return(MG_OK);
}


int
e_faceh(                /* replace face+holes with single contour */
      int   ac,
      char  **av
)
{
      char  *newav[MG_MAXARGC];
      int   lastp = 0;
      register int      i, j;

      newav[0] = mg_ename[MG_E_FACE];
      for (i = 1; i < ac; i++)
            if (av[i][0] == '-') {
                  if (i < 4)
                        return(MG_EARGC);
                  if (i >= ac-1)
                        break;
                  if (!lastp)
                        lastp = i-1;
                  for (j = i+1; j < ac-1 && av[j+1][0] != '-'; j++)
                        ;
                  if (j - i < 3)
                        return(MG_EARGC);
                  newav[i] = av[j]; /* connect hole loop */
            } else
                  newav[i] = av[i]; /* hole or perimeter vertex */
      if (lastp)
            newav[i++] = av[lastp];       /* finish seam to outside */
      newav[i] = NULL;
      return(mg_handle(MG_E_FACE, i, newav));
}


static void
make_axes(        /* compute u and v given w (normalized) */
      FVECT u,
      FVECT v,
      FVECT w
)
{
      register int      i;

      v[0] = v[1] = v[2] = 0.;
      for (i = 0; i < 3; i++)
            if (w[i] < .6 && w[i] > -.6)
                  break;
      v[i] = 1.;
      fcross(u, v, w);
      normalize(u);
      fcross(v, w, u);
}


int
e_sph(                  /* expand a sphere into cones */
      int   ac,
      char  **av
)
{
      static char p2x[24], p2y[24], p2z[24], r1[24], r2[24];
      static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_sv1","=","_sv2"};
      static char *v2ent[4] = {mg_ename[MG_E_VERTEX],"_sv2","="};
      static char *p2ent[5] = {mg_ename[MG_E_POINT],p2x,p2y,p2z};
      static char *conent[6] = {mg_ename[MG_E_CONE],"_sv1",r1,"_sv2",r2};
      register C_VERTEX *cv;
      register int      i;
      int   rval;
      double      rad;
      double      theta;

      if (ac != 3)
            return(MG_EARGC);
      if ((cv = c_getvert(av[1])) == NULL)
            return(MG_EUNDEF);
      if (!isflt(av[2]))
            return(MG_ETYPE);
      rad = atof(av[2]);
                              /* initialize */
      warpconends = 1;
      if ((rval = mg_handle(MG_E_VERTEX, 3, v2ent)) != MG_OK)
            return(rval);
      sprintf(p2x, FLTFMT, cv->p[0]);
      sprintf(p2y, FLTFMT, cv->p[1]);
      sprintf(p2z, FLTFMT, cv->p[2]+rad);
      if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
            return(rval);
      r2[0] = '0'; r2[1] = '\0';
      for (i = 1; i <= 2*mg_nqcdivs; i++) {
            theta = i*(PI/2)/mg_nqcdivs;
            if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                  return(rval);
            sprintf(p2z, FLTFMT, cv->p[2]+rad*cos(theta));
            if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
                  return(rval);
            if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
                  return(rval);
            strcpy(r1, r2);
            sprintf(r2, FLTFMT, rad*sin(theta));
            if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
                  return(rval);
      }
      warpconends = 0;
      return(MG_OK);
}


int
e_torus(                /* expand a torus into cones */
      int   ac,
      char  **av
)
{
      static char p2[3][24], r1[24], r2[24];
      static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_tv1","=","_tv2"};
      static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_tv2","="};
      static char *p2ent[5] = {mg_ename[MG_E_POINT],p2[0],p2[1],p2[2]};
      static char *conent[6] = {mg_ename[MG_E_CONE],"_tv1",r1,"_tv2",r2};
      register C_VERTEX *cv;
      register int      i, j;
      int   rval;
      int   sgn;
      double      minrad, maxrad, avgrad;
      double      theta;

      if (ac != 4)
            return(MG_EARGC);
      if ((cv = c_getvert(av[1])) == NULL)
            return(MG_EUNDEF);
      if (is0vect(cv->n))
            return(MG_EILL);
      if (!isflt(av[2]) || !isflt(av[3]))
            return(MG_ETYPE);
      minrad = atof(av[2]);
      round0(minrad);
      maxrad = atof(av[3]);
                              /* check orientation */
      if (minrad > 0.)
            sgn = 1;
      else if (minrad < 0.)
            sgn = -1;
      else if (maxrad > 0.)
            sgn = 1;
      else if (maxrad < 0.)
            sgn = -1;
      else
            return(MG_EILL);
      if (sgn*(maxrad-minrad) <= 0.)
            return(MG_EILL);
                              /* initialize */
      warpconends = 1;
      v2ent[3] = av[1];
      for (j = 0; j < 3; j++)
            sprintf(p2[j], FLTFMT, cv->p[j] +
                        .5*sgn*(maxrad-minrad)*cv->n[j]);
      if ((rval = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
            return(rval);
      if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
            return(rval);
      sprintf(r2, FLTFMT, avgrad=.5*(minrad+maxrad));
                              /* run outer section */
      for (i = 1; i <= 2*mg_nqcdivs; i++) {
            theta = i*(PI/2)/mg_nqcdivs;
            if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                  return(rval);
            for (j = 0; j < 3; j++)
                  sprintf(p2[j], FLTFMT, cv->p[j] +
                        .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
            if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
                  return(rval);
            if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
                  return(rval);
            strcpy(r1, r2);
            sprintf(r2, FLTFMT, avgrad + .5*(maxrad-minrad)*sin(theta));
            if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
                  return(rval);
      }
                              /* run inner section */
      sprintf(r2, FLTFMT, -.5*(minrad+maxrad));
      for ( ; i <= 4*mg_nqcdivs; i++) {
            theta = i*(PI/2)/mg_nqcdivs;
            for (j = 0; j < 3; j++)
                  sprintf(p2[j], FLTFMT, cv->p[j] +
                        .5*sgn*(maxrad-minrad)*cos(theta)*cv->n[j]);
            if ((rval = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                  return(rval);
            if ((rval = mg_handle(MG_E_VERTEX, 2, v2ent)) != MG_OK)
                  return(rval);
            if ((rval = mg_handle(MG_E_POINT, 4, p2ent)) != MG_OK)
                  return(rval);
            strcpy(r1, r2);
            sprintf(r2, FLTFMT, -avgrad - .5*(maxrad-minrad)*sin(theta));
            if ((rval = mg_handle(MG_E_CONE, 5, conent)) != MG_OK)
                  return(rval);
      }
      warpconends = 0;
      return(MG_OK);
}


int
e_cyl(                  /* replace a cylinder with equivalent cone */
      int   ac,
      char  **av
)
{
      static char *avnew[6] = {mg_ename[MG_E_CONE]};

      if (ac != 4)
            return(MG_EARGC);
      avnew[1] = av[1];
      avnew[2] = av[2];
      avnew[3] = av[3];
      avnew[4] = av[2];
      return(mg_handle(MG_E_CONE, 5, avnew));
}


int
e_ring(                 /* turn a ring into polygons */
      int   ac,
      char  **av
)
{
      static char p3[3][24], p4[3][24];
      static char *nzent[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
      static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_rv1","="};
      static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_rv2","=","_rv3"};
      static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_rv3","="};
      static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
      static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_rv4","="};
      static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
      static char *fent[6] = {mg_ename[MG_E_FACE],"_rv1","_rv2","_rv3","_rv4"};
      register C_VERTEX *cv;
      register int      i, j;
      FVECT u, v;
      double      minrad, maxrad;
      int   rv;
      double      theta, d;

      if (ac != 4)
            return(MG_EARGC);
      if ((cv = c_getvert(av[1])) == NULL)
            return(MG_EUNDEF);
      if (is0vect(cv->n))
            return(MG_EILL);
      if (!isflt(av[2]) || !isflt(av[3]))
            return(MG_ETYPE);
      minrad = atof(av[2]);
      round0(minrad);
      maxrad = atof(av[3]);
      if (minrad < 0. || maxrad <= minrad)
            return(MG_EILL);
                              /* initialize */
      make_axes(u, v, cv->n);
      for (j = 0; j < 3; j++)
            sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*u[j]);
      if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
            return(rv);
      if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
            return(rv);
      if (minrad == 0.) {           /* closed */
            v1ent[3] = av[1];
            if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                  return(rv);
            if ((rv = mg_handle(MG_E_NORMAL, 4, nzent)) != MG_OK)
                  return(rv);
            for (i = 1; i <= 4*mg_nqcdivs; i++) {
                  theta = i*(PI/2)/mg_nqcdivs;
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
                        return(rv);
                  for (j = 0; j < 3; j++)
                        sprintf(p3[j], FLTFMT, cv->p[j] +
                                    maxrad*u[j]*cos(theta) +
                                    maxrad*v[j]*sin(theta));
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
                        return(rv);
            }
      } else {                /* open */
            if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
                  return(rv);
            for (j = 0; j < 3; j++)
                  sprintf(p4[j], FLTFMT, cv->p[j] + minrad*u[j]);
            if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
                  return(rv);
            v1ent[3] = "_rv4";
            for (i = 1; i <= 4*mg_nqcdivs; i++) {
                  theta = i*(PI/2)/mg_nqcdivs;
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
                        return(rv);
                  for (j = 0; j < 3; j++) {
                        d = u[j]*cos(theta) + v[j]*sin(theta);
                        sprintf(p3[j], FLTFMT, cv->p[j] + maxrad*d);
                        sprintf(p4[j], FLTFMT, cv->p[j] + minrad*d);
                  }
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
                        return(rv);
            }
      }
      return(MG_OK);
}


int
e_cone(                 /* turn a cone into polygons */
      int   ac,
      char  **av
)
{
      static char p3[3][24], p4[3][24], n3[3][24], n4[3][24];
      static char *v1ent[5] = {mg_ename[MG_E_VERTEX],"_cv1","="};
      static char *v2ent[5] = {mg_ename[MG_E_VERTEX],"_cv2","=","_cv3"};
      static char *v3ent[4] = {mg_ename[MG_E_VERTEX],"_cv3","="};
      static char *p3ent[5] = {mg_ename[MG_E_POINT],p3[0],p3[1],p3[2]};
      static char *n3ent[5] = {mg_ename[MG_E_NORMAL],n3[0],n3[1],n3[2]};
      static char *v4ent[4] = {mg_ename[MG_E_VERTEX],"_cv4","="};
      static char *p4ent[5] = {mg_ename[MG_E_POINT],p4[0],p4[1],p4[2]};
      static char *n4ent[5] = {mg_ename[MG_E_NORMAL],n4[0],n4[1],n4[2]};
      static char *fent[6] = {mg_ename[MG_E_FACE],"_cv1","_cv2","_cv3","_cv4"};
      char  *v1n;
      register C_VERTEX *cv1, *cv2;
      register int      i, j;
      FVECT u, v, w;
      double      rad1, rad2;
      int   sgn;
      double      n1off, n2off;
      double      d;
      int   rv;
      double      theta;

      if (ac != 5)
            return(MG_EARGC);
      if ((cv1 = c_getvert(av[1])) == NULL ||
                  (cv2 = c_getvert(av[3])) == NULL)
            return(MG_EUNDEF);
      v1n = av[1];
      if (!isflt(av[2]) || !isflt(av[4]))
            return(MG_ETYPE);
      rad1 = atof(av[2]);
      round0(rad1);
      rad2 = atof(av[4]);
      round0(rad2);
      if (rad1 == 0.) {
            if (rad2 == 0.)
                  return(MG_EILL);
      } else if (rad2 != 0.) {
            if ((rad1 < 0.) ^ (rad2 < 0.))
                  return(MG_EILL);
      } else {                /* swap */
            C_VERTEX    *cv;

            cv = cv1;
            cv1 = cv2;
            cv2 = cv;
            v1n = av[3];
            d = rad1;
            rad1 = rad2;
            rad2 = d;
      }
      sgn = rad2 < 0. ? -1 : 1;
                              /* initialize */
      for (j = 0; j < 3; j++)
            w[j] = cv1->p[j] - cv2->p[j];
      if ((d = normalize(w)) == 0.)
            return(MG_EILL);
      n1off = n2off = (rad2 - rad1)/d;
      if (warpconends) {            /* hack for e_sph and e_torus */
            d = atan(n2off) - (PI/4)/mg_nqcdivs;
            if (d <= -PI/2+FTINY)
                  n2off = -FHUGE;
            else
                  n2off = tan(d);
      }
      make_axes(u, v, w);
      for (j = 0; j < 3; j++) {
            sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*u[j]);
            if (n2off <= -FHUGE)
                  sprintf(n3[j], FLTFMT, -w[j]);
            else
                  sprintf(n3[j], FLTFMT, u[j] + w[j]*n2off);
      }
      if ((rv = mg_handle(MG_E_VERTEX, 3, v3ent)) != MG_OK)
            return(rv);
      if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
            return(rv);
      if ((rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
            return(rv);
      if (rad1 == 0.) {       /* triangles */
            v1ent[3] = v1n;
            if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                  return(rv);
            for (j = 0; j < 3; j++)
                  sprintf(n4[j], FLTFMT, w[j]);
            if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
                  return(rv);
            for (i = 1; i <= 4*mg_nqcdivs; i++) {
                  theta = sgn*i*(PI/2)/mg_nqcdivs;
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
                        return(rv);
                  for (j = 0; j < 3; j++) {
                        d = u[j]*cos(theta) + v[j]*sin(theta);
                        sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
                        if (n2off > -FHUGE)
                              sprintf(n3[j], FLTFMT, d + w[j]*n2off);
                  }
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
                        return(rv);
                  if (n2off > -FHUGE &&
                  (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_FACE, 4, fent)) != MG_OK)
                        return(rv);
            }
      } else {                /* quads */
            v1ent[3] = "_cv4";
            if (warpconends) {            /* hack for e_sph and e_torus */
                  d = atan(n1off) + (PI/4)/mg_nqcdivs;
                  if (d >= PI/2-FTINY)
                        n1off = FHUGE;
                  else
                        n1off = tan(atan(n1off)+(PI/4)/mg_nqcdivs);
            }
            for (j = 0; j < 3; j++) {
                  sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*u[j]);
                  if (n1off >= FHUGE)
                        sprintf(n4[j], FLTFMT, w[j]);
                  else
                        sprintf(n4[j], FLTFMT, u[j] + w[j]*n1off);
            }
            if ((rv = mg_handle(MG_E_VERTEX, 3, v4ent)) != MG_OK)
                  return(rv);
            if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
                  return(rv);
            if ((rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
                  return(rv);
            for (i = 1; i <= 4*mg_nqcdivs; i++) {
                  theta = sgn*i*(PI/2)/mg_nqcdivs;
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v1ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_VERTEX, 4, v2ent)) != MG_OK)
                        return(rv);
                  for (j = 0; j < 3; j++) {
                        d = u[j]*cos(theta) + v[j]*sin(theta);
                        sprintf(p3[j], FLTFMT, cv2->p[j] + rad2*d);
                        if (n2off > -FHUGE)
                              sprintf(n3[j], FLTFMT, d + w[j]*n2off);
                        sprintf(p4[j], FLTFMT, cv1->p[j] + rad1*d);
                        if (n1off < FHUGE)
                              sprintf(n4[j], FLTFMT, d + w[j]*n1off);
                  }
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p3ent)) != MG_OK)
                        return(rv);
                  if (n2off > -FHUGE &&
                  (rv = mg_handle(MG_E_NORMAL, 4, n3ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_VERTEX, 2, v4ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_POINT, 4, p4ent)) != MG_OK)
                        return(rv);
                  if (n1off < FHUGE &&
                  (rv = mg_handle(MG_E_NORMAL, 4, n4ent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_FACE, 5, fent)) != MG_OK)
                        return(rv);
            }
      }
      return(MG_OK);
}


int
e_prism(                /* turn a prism into polygons */
      int   ac,
      char  **av
)
{
      static char p[3][24];
      static char *vent[5] = {mg_ename[MG_E_VERTEX],NULL,"="};
      static char *pent[5] = {mg_ename[MG_E_POINT],p[0],p[1],p[2]};
      static char *znorm[5] = {mg_ename[MG_E_NORMAL],"0","0","0"};
      char  *newav[MG_MAXARGC], nvn[MG_MAXARGC-1][8];
      double      length;
      int   hasnorm;
      FVECT v1, v2, v3, norm;
      register C_VERTEX *cv;
      C_VERTEX    *cv0;
      int   rv;
      register int      i, j;
                                    /* check arguments */
      if (ac < 5)
            return(MG_EARGC);
      if (!isflt(av[ac-1]))
            return(MG_ETYPE);
      length = atof(av[ac-1]);
      if (length <= FTINY && length >= -FTINY)
            return(MG_EILL);
                                    /* compute face normal */
      if ((cv0 = c_getvert(av[1])) == NULL)
            return(MG_EUNDEF);
      hasnorm = 0;
      norm[0] = norm[1] = norm[2] = 0.;
      v1[0] = v1[1] = v1[2] = 0.;
      for (i = 2; i < ac-1; i++) {
            if ((cv = c_getvert(av[i])) == NULL)
                  return(MG_EUNDEF);
            hasnorm += !is0vect(cv->n);
            v2[0] = cv->p[0] - cv0->p[0];
            v2[1] = cv->p[1] - cv0->p[1];
            v2[2] = cv->p[2] - cv0->p[2];
            fcross(v3, v1, v2);
            norm[0] += v3[0];
            norm[1] += v3[1];
            norm[2] += v3[2];
            VCOPY(v1, v2);
      }
      if (normalize(norm) == 0.)
            return(MG_EILL);
                                    /* create moved vertices */
      for (i = 1; i < ac-1; i++) {
            sprintf(nvn[i-1], "_pv%d", i);
            vent[1] = nvn[i-1];
            vent[3] = av[i];
            if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
                  return(rv);
            cv = c_getvert(av[i]);        /* checked above */
            for (j = 0; j < 3; j++)
                  sprintf(p[j], FLTFMT, cv->p[j] - length*norm[j]);
            if ((rv = mg_handle(MG_E_POINT, 4, pent)) != MG_OK)
                  return(rv);
      }
                                    /* make faces */
      newav[0] = mg_ename[MG_E_FACE];
                                    /* do the side faces */
      newav[5] = NULL;
      newav[3] = av[ac-2];
      newav[4] = nvn[ac-3];
      for (i = 1; i < ac-1; i++) {
            newav[1] = nvn[i-1];
            newav[2] = av[i];
            if ((rv = mg_handle(MG_E_FACE, 5, newav)) != MG_OK)
                  return(rv);
            newav[3] = newav[2];
            newav[4] = newav[1];
      }
                                    /* do top face */
      for (i = 1; i < ac-1; i++) {
            if (hasnorm) {                /* zero normals */
                  vent[1] = nvn[i-1];
                  if ((rv = mg_handle(MG_E_VERTEX, 2, vent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
                        return(rv);
            }
            newav[ac-1-i] = nvn[i-1];     /* reverse */
      }
      if ((rv = mg_handle(MG_E_FACE, ac-1, newav)) != MG_OK)
            return(rv);
                                    /* do bottom face */
      if (hasnorm)
            for (i = 1; i < ac-1; i++) {
                  vent[1] = nvn[i-1];
                  vent[3] = av[i];
                  if ((rv = mg_handle(MG_E_VERTEX, 4, vent)) != MG_OK)
                        return(rv);
                  if ((rv = mg_handle(MG_E_NORMAL, 4, znorm)) != MG_OK)
                        return(rv);
                  newav[i] = nvn[i-1];
            }
      else
            for (i = 1; i < ac-1; i++)
                  newav[i] = av[i];
      newav[i] = NULL;
      if ((rv = mg_handle(MG_E_FACE, i, newav)) != MG_OK)
            return(rv);
      return(MG_OK);
}


static int
put_cxy(void)                 /* put out current xy chromaticities */
{
      static char xbuf[24], ybuf[24];
      static char *ccom[4] = {mg_ename[MG_E_CXY], xbuf, ybuf};

      sprintf(xbuf, "%.4f", c_ccolor->cx);
      sprintf(ybuf, "%.4f", c_ccolor->cy);
      return(mg_handle(MG_E_CXY, 3, ccom));
}


static int
put_cspec(void)               /* put out current color spectrum */
{
      char  wl[2][6], vbuf[C_CNSS][24];
      char  *newav[C_CNSS+4];
      double      sf;
      register int      i;

      if (mg_ehand[MG_E_CSPEC] != c_hcolor) {
            sprintf(wl[0], "%d", C_CMINWL);
            sprintf(wl[1], "%d", C_CMAXWL);
            newav[0] = mg_ename[MG_E_CSPEC];
            newav[1] = wl[0];
            newav[2] = wl[1];
            sf = (double)C_CNSS / c_ccolor->ssum;
            for (i = 0; i < C_CNSS; i++) {
                  sprintf(vbuf[i], "%.4f", sf*c_ccolor->ssamp[i]);
                  newav[i+3] = vbuf[i];
            }
            newav[C_CNSS+3] = NULL;
            if ((i = mg_handle(MG_E_CSPEC, C_CNSS+3, newav)) != MG_OK)
                  return(i);
      }
      return(MG_OK);
}


static int
e_cspec(                /* handle spectral color */
      int   ac,
      char  **av
)
{
                        /* convert to xy chromaticity */
      c_ccvt(c_ccolor, C_CSXY);
                        /* if it's really their handler, use it */
      if (mg_ehand[MG_E_CXY] != c_hcolor)
            return(put_cxy());
      return(MG_OK);
}


static int
e_cmix(                 /* handle mixing of colors */
      int   ac,
      char  **av
)
{
      /*
       * Contorted logic works as follows:
       *    1. the colors are already mixed in c_hcolor() support function
       *    2. if we would handle a spectral result, make sure it's not
       *    3. if c_hcolor() would handle a spectral result, don't bother
       *    4. otherwise, make cspec entity and pass it to their handler
       *    5. if we have only xy results, handle it as c_spec() would
       */
      if (mg_ehand[MG_E_CSPEC] == e_cspec)
            c_ccvt(c_ccolor, C_CSXY);
      else if (c_ccolor->flags & C_CDSPEC)
            return(put_cspec());
      if (mg_ehand[MG_E_CXY] != c_hcolor)
            return(put_cxy());
      return(MG_OK);
}


static int
e_cct(                  /* handle color temperature */
      int   ac,
      char  **av
)
{
      /*
       * Logic is similar to e_cmix here.  Support handler has already
       * converted temperature to spectral color.  Put it out as such
       * if they support it, otherwise convert to xy chromaticity and
       * put it out if they handle it.
       */
      if (mg_ehand[MG_E_CSPEC] != e_cspec)
            return(put_cspec());
      c_ccvt(c_ccolor, C_CSXY);
      if (mg_ehand[MG_E_CXY] != c_hcolor)
            return(put_cxy());
      return(MG_OK);
}

Generated by  Doxygen 1.6.0   Back to index